

US008216445B2

(12) United States Patent

Anderson et al.

(54) NANOPOROUS INSULATING OXIDE DEIONIZATION DEVICE HAVING ASYMMETRIC ELECTRODES AND METHOD OF USE THEREOF

(75) Inventors: Marc A. Anderson, Madison, WI (US);

Kevin C. Leonard, Madison, WI (US)

(73) Assignee: Wisconsin Alumni Research

Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 1287 days.

(21) Appl. No.: 11/932,741

(22) Filed: Oct. 31, 2007

(65) Prior Publication Data

US 2008/0121531 A1 May 29, 2008

Related U.S. Application Data

- (60) Provisional application No. 60/855,666, filed on Oct. 31, 2006.
- (51) Int. Cl.

 H01G 9/042 (2006.01)

 H01G 9/045 (2006.01)

 H01G 9/048 (2006.01)

 C02F 1/469 (2006.01)

 C02F 1/58 (2006.01)
- (52) **U.S. Cl.** **205/701**; 205/688; 205/703; 205/746; 205/754; 205/759; 205/760; 205/770; 361/503; 361/504; 361/505

(56) References Cited

U.S. PATENT DOCUMENTS

5,006,248	A	4/1991	Anderson et al.	
5,208,190	A	5/1993	Anderson et al.	
6.798,639	B2 *	9/2004	Faris et al.	361/302

(10) Patent No.: US 8,216,445 B2 (45) Date of Patent: Jul. 10, 2012

2002/0189947 A1	* 12/2002	Paul et al	204/461
2004/0074768 A1	* 4/2004	Anex et al	204/294
2005/0155216 A1	* 7/2005	Cho et al	29/623.5

OTHER PUBLICATIONS

Ryoo, M.-W. et al. "Improvement in capacitive deionization function of activated carbon cloth by titania modification," Water Research, 37, 2003, 1527-1534.*

(Continued)

Primary Examiner — Krishnan S Menon
Assistant Examiner — Michelle Adams
(74) Attorney, Agent, or Firm — Armstrong Teasdale LLP

(57) ABSTRACT

A nanoporous insulating oxide deionization device, method of manufacture and method of use thereof for deionizing a water supply (such as a hard water supply), for desalinating a salt water supply, and for treating a bacteria-containing water supply. The device contains two composite electrodes each constructed from a conductive backing electrode and a composite oxide layer being an insulating oxide or a non-insulating oxide and an intermediate porous layer. The composite layer being substantially free of mixed oxidation states and nanoporous and having a median pore diameter of 0.5-500 nanometers and average surface area of 300-600 m²/g. The composite layer made from a stable sol-gel suspension containing particles of the insulating oxide, the median primary particle diameter being 1-50 nanometers. The difference in zeta potential, at a pH in the range of 6-9, being sufficient to suitably remove alkaline and alkaline earth cations (such as Ca²⁺ and Na¹⁺), various organic and other inorganic cations and organic and inorganic anions from water, preferably household hard water. One composite layer being constructed from a mixture of Al₂O₃, MgAl₂O₄ and/or Mg-doped Al₂O₃ particles, and the other composite layer being constructed from SiO₂ or TiO₂.

37 Claims, 10 Drawing Sheets

